본문 바로가기
영문 위키피디아 번역

(번역) Vertical tangent

by 다움위키 2024. 4. 19.
Original article: w:Vertical tangent

 

수학(mathematics), 특히 미적분학(calculus)에서, 수직 접선(vertical tangent)은 수직으로 접하는(tangent) 직선입니다. 수직 직선은 무한대(infinite) 기울기(slope)를 가지기 때문에, 그래프(graph)가 수직 접선을 가지는 함수(function)는 접하는 점에서 미분-가능(differentiable)이 아닙니다.

Limit definition

함수 ƒ는 만약 도함수를 정의하기 위해 사용되는 차이 몫(difference quotient)이 다음 무한 극한을 가지면 x = a에서 수직 접선을 가집니다:

limh0f(a+h)f(a)h=+orlimh0f(a+h)f(a)h=.

첫 번째 경우는 위쪽-경사진 수직 접선에 해당하고, 두 번째 경우는 아래쪽-경사진 수직 접선에 해당합니다. 비공식적으로 말하면, ƒ의 그래프는 만약 a에서 ƒ의 도함수가 양의 또는 음의 무한대 중 하나이면 x = a에서 수직 접선을 가집니다.

연속 함수(continuous function)에 대해, 도함수의 극한을 취함으로써 수직 접선을 검출하는 것이 종종 가능합니다. 만약 다음이면:

limxaf(x)=+,

ƒ는 반드시 x = a에서 위쪽-경사진 수직 접선을 반드시 가집니다. 비슷하게, 만약 다음이면:

limxaf(x)=,

ƒ는 반드시 x = a에서 아래쪽-경사진 수직 접선을 반드시 가집니다. 이들 상황에서, ƒ에 대한 수직 접선은 도함수의 그래프에 대한 수직 점근선(asymptote)으로 나타납니다.

Vertical cusps

수직 뾰족-점(vertical cusps)은 수직 접선과 밀접한 관련되어 있습니다. 이것은 한-쪽 도함수(one-sided derivative)가 모두 무한이지만, 하나는 양이고 다른 하나는 음일 때 발생합니다. 예를 들어, 만약 다음이면:

limh0f(a+h)f(a)h=+andlimh0+f(a+h)f(a)h=,

ƒ의 그래프는 왼쪽에서 위로 경사지고 오른쪽에서 아래로 경사지는 수직 뾰족-점을 가질 것입니다.

수직 접선과 마찬가지로, 수직 뾰족-점은 도함수의 극한을 검사함으로써 연속 함수에 대해 때때로 감지될 수 있습니다. 예를 들어, 만약 다음이면:

limxaf(x)=andlimxa+f(x)=+,

ƒ의 그래프는 왼쪽에서 아래로 경사지고 오른쪽에서 위로 경사지는 수직 뾰족-점을 가질 것입니다. 이것은 왼쪽에서 로 가고 오른쪽에서 로 가는 도함수의 그래프에 대한 수직 점근선에 해당합니다.

Example

다음 함수:

f(x)=x3

x = 0에서 수직 접선을 가지는데, 왜냐하면 그것은 연속이고 다음이기 때문입니다:

limx0f(x)=limx013x23=.

비슷하게, 다음 함수:

g(x)=x23

x = 0에서 수직 뾰족-점을 가지는데, 왜냐하면 그것은 연속이고 다음이기 때문입니다:

limx0g(x)=limx023x3=,

limx0+g(x)=limx0+23x3=+.

References